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PARIS: Pathfinder Advanced Radar Ice Sounder

2007 Mission to Greenland

The Way Forward
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Objective

Develop techniques to enable and/or to
enhance the visibility of internal layering and
bottom topography of (continental) ice sheets
when probed (sounded) by a high-altitude
radar (from aircraft or spacecraft)
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Perspective

The Major Challenges: Clutter; Weak Signals

Clutter dimensions: Along-track suppression
Across-track suppression

Weak signal mitigation: Innovative radar design
large dynamic range, very low side-lobes,
extreme linearity, generous power

NASA-I1P-supported proof-of-concept system: PARIS

150 MHz (vision: Antarctica; planetary prototype)
High altitude (first successful demonstration, P-3 aircraft)

Prototype for PARIS: D2P radar altimeter
(previous NASA 1P project)
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PARIS: Pathfinder Advanced Radar Ice Sounder

Along-track clutter suppression
Delay-Doppler processing
Radar design: key features
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Paris data, start time 07-May-2007 13:50:02.3 UTC
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Along-Track Clutter Suppression:
Partially-Coherent Doppler

View of along-track plane
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Along-Track Clutter Suppression: Doppler

» \/

Delay-Doppler
processing selects
along-track (small)
footprints,
suppressing off-
nadir clutter
contributions
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Delay-Doppler Technique
Spacecraft altimeter example
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Benefits of partially-coherent Doppler processing

Original data Incoherent Coherent Delay-Doppler
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Radar sounder architecture (minimize RF operations)
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Design: isolate aliased (under-sampled) signals

Original PARIS Spectral Plan Radar Signal
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2007 Mission to Greenland
Quick-time and initial results
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PARIS on the NASA P-3

= Univ. of Kansas’
CRESIS antennas
(shared with PARIYS)
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PARIS: Inside the P-3

PARIS-I Radar in
Operation
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Arctic '07 Mission Tracks

2007 Arctic ATM Flights
* PARIS shared the NASA P- co~d 1 TIUN N
3 w/ Airborne Topographic

Mapper (ATM)

* PARIS operated during
ATM (low-altitude) flights

= 025 GB of PARIS data
collected over 10 days

* High altitude data acquired
04 and 07 May
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Raw Data 07 May 2007 14:10:45-14:16:00

(sub-sample — first four seconds)
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Depth [m]

Delay-Doppler (partially-coherent) Sounding

07 Moy 2007 from 39,5657°W 74.1498°N to 40.4569°W 74,5799°N
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The Way Forward
Refine along-track processing algorithm

Cross-track clutter suppression
Conclusions
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Cross-Track Clutter Suppression:
Polarization (new concept)

View of cross-track plane N )
 Transmit circularly polarized (CP)
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Why Transmit Circular Polarization?

» Single-bounce (specular) reflection always reverses the
sense of the illuminating (circular) polarity

» (Linear polarization sense-reversal is not observable)

» Most reflections from nadir (and from depth) will be
specular => opposite sense circularly polarized

» Specular reflections => high coherence (~ degree of
polarization)

» Reflections from clutter almost always will have
different polarization properties
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Dual Hybrid-Polarity Radar Sounder

Transmit Circular Polarization

Receive (coherently) linear (H & V)

Primary data product:
90° Transmitter &
waveform 2x2 covariance (or coherency) matrix
T of the observed field,
or (equivalently) the 4-element
Timing and
v H control Stokes vector
i -
v il s1
H LNA —p| HRxchannel | 3| H processor H\/* S2
v ¥ v H s3
¢ »{| NA —| V Rx channel ——»| V processor |V|> S4
vV H
Antenna
New degree-of-freedom to realize
cross-track clutter suppression
V H
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On Polarimetric Parameters

» Stokes parameters fully characterize the received EM
field => innovation for radar sounder data

» Stokes parameters support parametric discrimination
e.g.: > Measurement of relative (E :: E,) phase 6

> Degree of polarization m

Hybrid Polarity
S; = <|Ex|* +|Ey|* >+ 2N,

S, = <|Ex|*- |Ey|*>

m = (5,2 +S5°+§,°)* /S,

o =arctan (S,/S;)

APL
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Clutter vs Signal in m-delta Feature Space
Transmit left-circular polarization (Example: Real non-ice data)
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Clutter Suppression Issues (Recap)

A good sounder => a “clean” radar: dynamic range,
linearity, extreme side-lobe control, etc

Doppler (along-track): Well established

Proven technique (PARIS, Marsis, etc.)
Ground processing
Optimal performance => must match ice index of refraction

Polarization (across-track): New strategy

Developmental technique: requires proof-of-concept

Ground processing

Optimal performance may imply adaptive selectivity in
response to clutter and depth polarization signatures

: APL
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Conceptual Flow of Clutter Suppression
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Comments on hybrid-polarity

* Hybrid-polarity is a proven methodology for (compact)
polarimetric SAR (classification by matrix decomposition)

» The cross-track polarimetric method is fully compatible
with along-track enhancement techniques (Doppler and/or
polarimetric) for a radar sounder

 Sidelobes from the surface return can be suppressed if
their polarimetric signature differs from depth signals

* The same technique could help to suppress the triple-
bounce reflection of the aircraft (ideal for a UAV or
airborne radar sounder application)

APL
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Conclusions

» Delay-Doppler is successful for suppressing along-
track clutter, enhancing radar sounding signals

» High-altitude radar sounding proven to be feasible

» PARIS design successfully demonstrates robust (and
generalizable) radar sounder principles

» Cross-track clutter suppression by polarimetric
selectivity is a promising (but as yet untested) technique

» In practical situations for which clutter vs signal
polarimetric phase distributions are significantly
different, then large SCR gain is likely

» Recommend continued development of these themes
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